Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 13(10): 4623-4643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970366

RESUMO

Methotrexate (MTX) which is one of the longest-used cytostatics, belongs to the group of antimetabolites and is used for treatment in different types of cancer as well as during autoimmune diseases. MTX can act as a modulator enable to create the optimal environment to generate the specific anti-tumor immune response. A novel system for MTX delivery is its conjugation with high-molecular-weight carriers such as hydroxyethyl starch (HES), a modified amylopectin-based polymer applied in medicine as a colloidal plasma volume expander. Such modification prolongs the plasma half-life of the HES-MTX nanoconjugate and improves the distribution of the drug in the body. In the current study, we focused on evaluating the dose-dependent therapeutic efficacy of chemotherapy with HES-MTX nanoconjugate compared to the free form of MTX, and examining the time-dependent changes in the local and systemic anti-tumor immune response induced by this therapy. To confirm the higher effectiveness of HES-MTX in comparison to MTX, we analyzed its action using murine MC38 colon carcinoma and B16 F0 melanoma tumor models. It was noted that HES-MTX at a dose of 20 mg/kg b.w. was more effective in tumor growth inhibition than MTX in both tumor models. One of the main differences between the two analyzed tumor models concerned the kinetics of the appearance of the immunomodulation. In MC38 tumors, the beneficial change in the tumor microenvironment (TME) landscape, manifested by the depletion of pro-tumor immune cells, and increased influx of cells with strong anti-tumor activity was noted already 3 days after HES-MTX administration, while in B16 F0 model, these changes occurred 10 days after the start of therapy. Thus, the immunomodulatory potential of the HES-MTX nanoconjugate may be closely related to the specific immune cell composition of the TME, which combined with additional treatment such as immunotherapies, would enhance the therapeutic potential of the nanoconjugate.

2.
Front Immunol ; 14: 1212606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545526

RESUMO

Background: The tumor microenvironment (TME) provides a conducive environment for the growth and survival of tumors. Negative factors present in TME, such as IL-10, may limit the effectiveness of cellular vaccines based on dendritic cells, therefore, it is important to control its effect. The influence of IL-10 on immune cells can be abolished e.g., by using antibodies against the receptor for this cytokine - anti-IL-10R. Furthermore, the anticancer activity of cellular vaccines can be enhanced by modifying them to produce proinflammatory cytokines, such as IL-12, IL-15 or IL-18. Additionally, an immunomodulatory dose of methotrexate and hydroxyethyl starch (HES-MTX) nanoconjugate may stimulate effector immune cells and eliminate regulatory T cells, which should enhance the antitumor action of immunotherapy based on DC vaccines. The main aim of our study was to determine whether the HES-MTX administered before immunotherapy with anti-IL-10R antibodies would change the effect of vaccines based on dendritic cells overproducing IL-12, IL-15, or IL-18. Methods: The activity of modified DCs was checked in two therapeutic protocols - immunotherapy with the addition of anti-IL10R antibodies and chemoimmunotherapy with HES-MTX and anti-IL10R antibodies. The inhibition of tumor growth and the effectiveness of the therapy in inducing a specific antitumor response were determined by analyzing lymphoid and myeloid cell populations in tumor nodules, and the activity of restimulated splenocytes. Results and conclusions: Using the HES-MTX nanoconjugate before immunotherapy based on multiple administrations of anti-IL-10R antibodies and cellular vaccines capable of overproducing proinflammatory cytokines IL-12, IL-15 or IL-18 created optimal conditions for the effective action of these vaccines in murine colon carcinoma MC38 model. The applied chemoimmunotherapy caused the highest inhibition of tumor growth in the group receiving DC/IL-15/IL-15Rα/TAg + DC/IL-18/TAg at the level of 72.4%. The use of cellular vaccines resulted in cytotoxic activity increase in both immuno- or chemoimmunotherapy. However, the greatest potential was observed both in tumor tissue and splenocytes obtained from mice receiving two- or three-component vaccines in the course of combined application. Thus, the designed treatment schedule may be promising in anticancer therapy.


Assuntos
Vacinas Anticâncer , Neoplasias do Colo , Citocinas , Animais , Camundongos , Células Dendríticas , Imunoterapia/métodos , Interleucina-10 , Interleucina-12 , Interleucina-15 , Interleucina-18 , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Nanoconjugados/uso terapêutico , Microambiente Tumoral
3.
J Enzyme Inhib Med Chem ; 38(1): 2193676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37146256

RESUMO

The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.


Assuntos
Agaricales , Cosmecêuticos , Tiossemicarbazonas , Animais , Camundongos , Monofenol Mono-Oxigenase , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Melaninas
4.
Front Immunol ; 14: 1155377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033926

RESUMO

Background: Understanding the negative impact of the tumor microenvironment on the creation of an effective immune response has contributed to the development of new therapeutic anti-cancer strategies. One such solution is combined therapy consisting of chemotherapeutic administration followed by dendritic cell (DC)-based vaccines. The use of cytostatic leads to the elimination of cancer cells, but can also modulate the tumor milieu. Moreover, great efforts are being made to increase the therapeutic outcome of immunotherapy, e.g. by enhancing the ability of DCs to generate an efficient immune response, even in the presence of immunosuppressive cytokines such as IL-10. The study aimed to determine the effectiveness of combined therapy with chemotherapeutic with immunomodulatory potential - HES-MTX nanoconjugate (composed of methotrexate (MTX) and hydroxyethyl starch (HES)) and DCs with downregulated expression of IL-10 receptor stimulated with tumor antigens (DC/shIL-10R/TAg) applied in MC38 murine colon carcinoma model. Methods: With the use of lentiviral vectors the DCs with decreased expression of IL-10R were obtained and characterized. During in vivo studies MC38-tumor bearing mice received MTX or HES-MTX nanoconjugate as a sole treatment or combined with DC-based immunotherapy containing unmodified DCs or DCs transduced with shRNA against IL-10R (or control shRNA sequence). Tumor volume was monitored during the experiment. One week after the last injection of DC-based vaccines, tumor nodules and spleens were dissected for ex vivo analysis. The changes in the local and systemic anti-tumor immune response were estimated with the use of flow cytometry and ELISA methods. Results and conclusions: In vitro studies showed that the downregulation of IL-10R expression in DCs enhances their ability to activate the specific anti-tumor immune response. The use of HES-MTX nanoconjugate and DC/shIL-10R/TAg in the therapy of MC38-tumor bearing mice resulted in the greatest tumor growth inhibition. At the local anti-tumor immune response level a decrease in the infiltration of cells with suppressor activity and an increase in the influx of effector cells into MC38 tumor tissue was observed. These changes were crucial to enhance the effective specific immune response at the systemic level, which was revealed in the greatest cytotoxic activity of spleen cells against MC38 cells.


Assuntos
Vacinas Anticâncer , Carcinoma , Neoplasias do Colo , Animais , Camundongos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Nanoconjugados/uso terapêutico , Microambiente Tumoral , RNA Interferente Pequeno/genética , Ativação Linfocitária , Células Dendríticas , Receptores de Interleucina-10/metabolismo , Carcinoma/tratamento farmacológico
5.
Bioelectrochemistry ; 150: 108356, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36566573

RESUMO

Ultrashort electric pulses in the nanosecond range (nsPEF) can affect extra- and intracellular lipid structures and can also alternate cell functioning reversibly and irreversibly. Several of the nsPEF effects are due to the abrupt rise in intracellular free calcium levels and calcium ions influx from the outside. Calcium is one of the most important factors in cell proliferation, differentiation, and cell death (apoptosis or necrosis). Manipulating calcium levels using electroporation can have different effects on normal and malignant cells. This study aimed to examine the impact of nsPEFs, combined with 1 mM Ca2+ in human colon adenocarcinoma cell lines: sensitive- LoVo and drug resistant-LoVoDX. In this study 200 pulses of 10 ns and high voltage (12.5-50 kVcm-1) were used. Cell viability was determined by MTT and clonogenic assay. Proteasomal activity, GSH/GSSG assay, ROS production, and PALS-1 protein were evaluated as oxidative stress markers and protein damage. Cell morphology was visualized by AFM, SEM, and confocal microscopy imaging. The results revealed that nsPEF with 1 mM Ca2+ is cytotoxic, particularly for LoVoDX cells, and safe for normal cells. NsPEF provoked ROS release, altered cell polarity, and destabilized cell morphology. These results can be important for future protocols for colon adenocarcinoma using calcium nsPEF.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Neoplasias do Colo/metabolismo , Membrana Celular/metabolismo , Eletroporação/métodos , Resistência a Medicamentos
6.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361727

RESUMO

Nanosecond (ns) pulsed electric field (PEF) is a technology in which the application of ultra-short electrical pulses can be used to disrupt the barrier function of cell plasma and internal membranes. Disruptions of the membrane integrity cause a substantial imbalance in cell homeostasis in which oxidative stress is a principal component. In the present study, nsPEF-induced oxidative stress was investigated in two gastric adenocarcinoma cell lines (EPG85-257P and EPG85-257RDB) which differ by their sensitivity to daunorubicin. Cells were exposed to 200 pulses of 10 ns duration, with the amplitude and pulse repetition frequency at 1 kHz, with electric field intensity varying from 12.5 to 50 kV/cm. The electroporation buffer contained either 1 mM or 2 mM calcium chloride. CellMask DeepRed visualized cell plasma permeabilization, Fluo-4 was used to visualize internal calcium ions content, and F-actin was labeled with AlexaFluor®488 for the cytoskeleton. The cellular viability was determined by MTT assay. An alkaline and neutral comet assay was employed to detect apoptotic and necrotic cell death. The luminescent method estimated the modifications in GSSG/GSH redox potential and the imbalance of proteasomal activity (chymotrypsin-, trypsin- and caspase-like). The reactive oxygen species (ROS) level was measured by flow cytometry using dihydroethidium (DHE) dye. Morphological visualization indicated cell shrinkage, affected cell membranes (characteristic bubbles and changed cell shape), and the reorganization of actin fibers with sites of its dense concentration; the effect was more intense with the increasing electric field strength. The most significant decrease in cell viability and GSSG/GSH redox potential was noted at the highest amplitude of 50 kV/cm, and calcium ions amplified this effect. nsPEF, particularly with calcium ions, inhibited proteasomal activities, resulting in increased protein degradation. nsPEF increased the percentage of apoptotic cells and ROS levels. The EPG85-257 RDB cell line, which is resistant to standard chemotherapy, was more sensitive to applied nsPEF protocols. The applied nsPEF method disrupted the metabolism of cancer cells and induced apoptotic cell death. The nsPEF ability to cause apoptosis, oxidative stress, and protein degradation make the nsPEF methodology a suitable alternative to current anticancer pharmacological methods.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Espécies Reativas de Oxigênio , Cálcio , Dissulfeto de Glutationa , Apoptose , Eletroporação/métodos , Estresse Oxidativo , Neoplasias Gástricas/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Resistência a Medicamentos
7.
Pharmaceutics ; 14(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890313

RESUMO

The failures of anti-ß-amyloid immunotherapies suggested that the very low fraction of injected antibodies reaching the brain parenchyma due to the filtering effect of the BBB may be a reason for the lack of therapeutic effect. However, there is no treatment, as yet, for the amyotrophic lateral sclerosis (ALS) despite substantial evidence existing of the involvement of TDP-43 protein in the evolution of ALS. To circumvent this filtering effect, we have developed a novel approach to facilitate the penetration of antibody fragments (Fabs) into the brain parenchyma. Leveraging the homing properties of endothelial progenitor cells (EPCs), we transfected, ex vivo, such cells with vectors encoding anti-ß-amyloid and anti-TDP43 Fabs turning them into an "antibody fragment factory". When injected these cells integrate into the BBB, where they secrete anti-TDP43 Fabs. The results showed the formation of tight junctions between the injected engineered EPCs and the unlabeled resident endothelial cells. When the EPCs were further modified to express the anti-TDP43 Fab, we could observe integration of these cells into the vasculature and the secretion of Fabs. Results confirm that production and secretion of Fabs at the BBB level leads to their migration to the brain parenchyma where they might exert a therapeutic effect.

8.
J Immunol Res ; 2022: 7508928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372586

RESUMO

The main purpose of our study was to determine the effect of dendritic cell (DC) transduction with lentiviral vectors carrying sequences of il18 and/or il12 genes on the level of antitumor activity in vitro and in vivo. We examined the ability of DCs to migrate to the tumor-draining lymph nodes and infiltrate tumor tissue and to activate the local and systemic antitumor response. On the 15th day, DCs genetically modified for production of IL-12 and/or IL-18 were administered peritumorally to C57BL/6 female mice with established MC38 tumors. Lymphoid organs and tumor tissue were collected from mice on the 3rd, 5th, and 7th days after a single administration of DCs for further analysis. Administration of DCs transduced for production of IL-12 alone and in combination with IL-18 increased the inflow and activity of CD4+ and CD8+ T lymphocytes in the tumor microenvironment and tumor-draining lymph nodes. We also found that even a single administration of such modified DCs could trigger a systemic antitumor response as well as inhibit tumor growth. Application of the developed DC-based vaccines may exert a favorable impact on stimulation of an antitumor immune response, especially if these DC vaccines are administered repeatedly.


Assuntos
Carcinoma , Interleucina-12 , Animais , Antígenos de Neoplasias , Colo , Células Dendríticas , Feminino , Imunidade , Interleucina-12/genética , Interleucina-18/genética , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
9.
Oncol Lett ; 22(2): 582, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34122633

RESUMO

Myeloid-derived suppressor cells (MDSCs) are potent suppressors of antitumor immunity and their accumulation is often associated with poor prognosis. The aim of the present study was to determine the mechanisms of action of lentiviral vectors encoding short hairpin (sh)RNA against interleukin-10 (IL-10), with particular emphasis on their influence on the activity of tumor-derived MDSCs. Lentiviral vectors encoding shRNA against IL-10 (shIL-10 LVs) were utilized to silence the expression of IL-10 either in MDSCs that were generated ex vivo from bone marrow cells cultured in the presence of supernatant from MC38 colon carcinoma cells, or in situ in the MC38 murine colon carcinoma environment. Although monocytic MDSCs (M-MDSCs) transduced with shIL-10 LVs exhibited increased suppressor activity, transduction of polymorphonuclear MDSCs (PMN-MDSCs) appeared to reduce their ability to inhibit T lymphocyte functions. Analysis of EGFP expression in MC38 tumors revealed that intratumorally inoculated shIL-10 LVs transduced tumor-infiltrating myeloid cells with the highest efficiency and, led to a decreased IL-10 level in the tumor microenvironment. However, the effect was accompanied by increased influx of PMN-MDSCs into tumors observed both on the 6th and on the 10th day after shIL-10 LV injections. Nevertheless, it was noted that suppressor activity of myeloid cells isolated from tumors was dependent on the efficiency of tumor-derived PMN-MDSC transduction with shIL-10 LVs. The increased percentage of transduced PMN-MDSCs on the 10th day was associated with diminished immunosuppressive activity of tumor-derived myeloid cells and an elevated ratio of cytotoxic T lymphocytes to M-MDSCs. The obtained data indicated that treatment with shIL-10 LVs may result in modulation of the immunosuppressive activity of MC38 colon carcinoma-derived MDSCs.

10.
Vaccines (Basel) ; 9(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064613

RESUMO

Twenty individuals (17 females, 3 males, aged 31-65 years (range), median: 46) who received both doses of the BioNTech Pfizer mRNA vaccine were examined (11 to 31 days, median: 25) after the second dose for the presence of antibodies against peptides of SARS-COV-2 and some of MERS-CoV, SARS-CoV1, HCov229E, and HCoVNL63. Clinical evaluation revealed that six people had COVID-19 in the past. We found that: (i) Six people claimed the presence of unwanted effects of vaccination, which were more frequent in those with a history of COVID-19 (4 out of 6 vs. 2 out of 14, p = 0.037); (ii) All individuals independent of the past history of COVID-19 responded equally well in IgG but those who experienced the disease tended to do better in IgA class (729.04 vs. 529.78 U/mL, p = 0.079); (iii) All those who had experienced the disease had IgG antibodies against nucleocapsid antigens but also 5 out of 14 who had not had the disease (6/6 vs. 5/14, p = 0.014); (iv) Anti S2 antibodies were present in the patients having COVID-19 in the past but also were found in those who had not had the disease (6/6 vs. 8/14, p = 0.144); (v) All vaccinated people were highly positive in the IGRA and the level of released IFN gamma was correlated with the numbers of HLADR positive lymphocytes in the blood (R = 0.5766, p = 0.008).

11.
Glycobiology ; 31(9): 1145-1162, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33978735

RESUMO

N-glycosylation is a ubiquitous posttranslational modification that may influence folding, subcellular localization, secretion, solubility and oligomerization of proteins. In this study, we examined the effects of N-glycans on the activity of human Gb3/CD77 synthase, which catalyzes the synthesis of glycosphingolipids with terminal Galα1→4Gal (Gb3 and the P1 antigen) and Galα1→4GalNAc disaccharides (the NOR antigen). The human Gb3/CD77 synthase contains two occupied N-glycosylation sites at positions N121 and N203. Intriguingly, we found that while the N-glycan at N203 is essential for activity and correct subcellular localization, the N-glycan at N121 is dispensable and its absence did not reduce, but, surprisingly, even increased the activity of the enzyme. The fully N-glycosylated human Gb3/CD77 synthase and its glycoform missing the N121 glycan correctly localized in the Golgi, whereas a glycoform without the N203 site partially mislocalized in the endoplasmic reticulum. A double mutein missing both N-glycans was inactive and accumulated in the endoplasmic reticulum. Our results suggest that the decreased specific activity of human Gb3/CD77 synthase glycovariants resulted from their improper subcellular localization and, to a smaller degree, a decrease in enzyme solubility. Taken together, our findings show that the two N-glycans of human Gb3/CD77 synthase have opposing effects on its properties, revealing a dual nature of N-glycosylation and potentially a novel regulatory mechanism controlling the biological activity of proteins.


Assuntos
Galactosiltransferases , Glicoesfingolipídeos , Galactosiltransferases/metabolismo , Glicosilação , Humanos , Polissacarídeos , Triexosilceramidas
12.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477655

RESUMO

A set of 12 monosubstituted acetophenone thiosemicarbazone derivatives (TSCs) were synthesized and their inhibitory properties toward tyrosinase activity were tested. Moreover, their ability to inhibit melanogenesis in the B16F10 murine melanoma cell line was studied. In order to investigate the nature of interactions between the enzyme and the inhibitors, molecular docking to the active site was performed. TSCs 5, 6, 8, and 9 revealed a half maximal inhibitory concentration (IC50) below 1 µM. Compound 6 turned out to be the most potent tyrosinase inhibitor. All investigated compounds showed reversible inhibition of competitive or mixed type. The para-substituted TSCs had higher affinity for the enzyme as compared to their ortho- and meta-analogues. All investigated compounds inhibited melanin production in B16F10 cells at the micromolar level. Molecular docking showed that the sulfur atom of the thiourea moiety penetrates the active site and interacts with copper ions. The above outcomes might be helpful in the design of new tyrosinase inhibitors in the food and cosmetic industries.

13.
Oncol Rep ; 45(3): 945-962, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432365

RESUMO

Chemotherapy with low­molecular weight compounds, despite elimination of cancer cells, entails adverse effects. To overcome this disadvantage, innovative drug delivery systems are being developed, including conjugation of macromolecular carriers with therapeutics, e.g. a nanoconjugate of hydroxyethyl starch and methotrexate (HES­MTX). The purpose of the present study was to determine whether HES­MTX, applied as a chemotherapeutic, is able to modulate the immune response and support the antitumor response generated by dendritic cells (DCs) used subsequently as immunotherapeutic vaccines. Therefore, MTX or HES­MTX was administered, as sole treatment or combined with DC­based vaccines, to MC38 colon carcinoma tumor­bearing mice. Alterations in antitumor immune response were evaluated by multiparameter flow cytometry analyses and functional assays. The results demonstrated that the nanoconjugate possesses greater immunomodulatory potential than MTX as reflected by changes in the landscape of immune cells infiltrating the tumor and increased cytotoxicity of splenic lymphocytes. In contrast to MTX, therapy with HES­MTX as sole treatment or combined with DC­based vaccines, contributed to significant tumor growth inhibition. However, only treatment with HES­MTX and DC­based vaccines activated the systemic specific antitumor response. In conclusion, due to its immunomodulatory properties, the HES­MTX nanoconjugate could become a potent anticancer agent used in both chemo­ and chemoimmunotherapeutic treatment schemes.


Assuntos
Vacinas Anticâncer/administração & dosagem , Carcinoma/terapia , Neoplasias do Colo/terapia , Células Dendríticas/imunologia , Portadores de Fármacos/química , Metotrexato/administração & dosagem , Animais , Vacinas Anticâncer/imunologia , Carcinoma/imunologia , Carcinoma/patologia , Linhagem Celular Tumoral/transplante , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Terapia Combinada/métodos , Modelos Animais de Doenças , Feminino , Humanos , Derivados de Hidroxietil Amido/química , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos , Nanoconjugados/química , Evasão Tumoral/efeitos dos fármacos
14.
Bioelectrochemistry ; 138: 107728, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33434787

RESUMO

Melanoma is considered the most aggressive type of skin cancer, still without effective treatment. Thus, alternative therapeutic methods are still in demand, and electroporation-supported photodynamic therapy (EP-PDT) of cancer cells seems a promising approach. New developments in EP-PDT aim at enhanced tumor selectivity and biocompatibility by applying a second-generation photosensitizer, i.e., Chlorin e6 (Ce6). We have verified the improved photodynamic effect of Ce6 on skin cancer melanoma (Me45) cells and control (CHO-K1) cells. In this study, we applied 1 or 5 pulses of 10 ms duration and assessed the EP-PDT effect with a variety of tests, such as singlet oxygen scavenger (ABMDMA) photooxidation, oxidoreductive potential measurements, kinetic measurements with fluorescent microscopy, photosensitizer uptake studies, lipid peroxidation level, and actin fibers organization. The optimization of photosensitizer uptake as a function of temperature was also performed. Our results indicated efficient Ce6 delivery into Me45 cells and good photodynamic efficiency enhanced by the electroporation of cancer cells.


Assuntos
Melanoma/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Clorofilídeos , Humanos , Cinética , Metástase Neoplásica , Fármacos Fotossensibilizantes/metabolismo , Porfirinas/metabolismo , Oxigênio Singlete/metabolismo , Fatores de Tempo
15.
Saudi Pharm J ; 28(11): 1364-1373, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33250643

RESUMO

Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid. Molecular dynamics studies show that CEP interacts with Voltage-dependent anion channel (VDAC), inducing the voltage-independent channel narrowing. In the new conformation, transport between mitochondria and cytoplasm is altered, which leads to the dose-dependent cytotoxicity. The biological effects of the interaction were investigated on glioblastoma multiforme (SNB-19) and neuronal (PC-12 + NGF) cell lines. The cytotoxic potential of cepharanthine was determined by MTT assay and flow cytometry apoptosis/necrosis studies. T-type calcium channel and VDAC were labelled by the immunocytochemical method. Additionally, fluorescent labelling of reactive oxygen species and mitochondria was performed. Changes in the pore size of VDAC were calculated as well. Molecular dynamics simulations were carried out to examine the interactions of cepharanthine with VDAC. The obtained results prove that cepharanthine enhances the apoptosis in glioma and neuronal cells by the release of reactive oxygen species. Cepharanthine alters the mitochondria-to-cytoplasm transport and thus induces the cytotoxicity with no selectivity.

16.
Cancers (Basel) ; 12(10)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023153

RESUMO

Cancer cell cross-talk with the host endothelium plays a crucial role in metastasis, but the underlying mechanisms are still not fully understood. We studied the involvement of protein disulphide isomerase A1 (PDIA1) in human breast cancer cell (MCF-7 and MDA-MB-231) adhesion and transendothelial migration. For comparison, the role of PDIA1 in proliferation, migration, cell cycle and apoptosis was also assessed. Pharmacological inhibitor, bepristat 2a and PDIA1 silencing were used to inhibit PDIA1. Inhibition of PDIA1 by bepristat 2a markedly decreased the adhesion of breast cancer cells to collagen type I, fibronectin and human lung microvascular endothelial cells. Transendothelial migration of breast cancer cells across the endothelial monolayer was also inhibited by bepristat 2a, an effect not associated with changes in ICAM-1 expression or changes in cellular bioenergetics. The silencing of PDIA1 produced less pronounced anti-adhesive effects. However, inhibiting extracellular free thiols by non-penetrating blocker p-chloromercuribenzene sulphonate substantially inhibited adhesion. Using a proteomic approach, we identified that ß1 and α2 integrins were the most abundant among all integrins in breast cancer cells as well as in lung microvascular endothelial cells, suggesting that integrins could represent a target for PDIA1. In conclusion, extracellular PDIA1 plays a major role in regulating the adhesion of cancer cells and their transendothelial migration, in addition to regulating cell cycle and caspase 3/7 activation by intracellular PDIA1. PDIA1-dependent regulation of cancer-endothelial cell interactions involves disulphide exchange and most likely integrin activation but is not mediated by the regulation of ICAM-1 expression or changes in cellular bioenergetics in breast cancer or endothelial cells.

17.
Anticancer Res ; 40(5): 2613-2625, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32366406

RESUMO

BACKGROUND/AIM: The occurrence of BRAFV600E mutation causes an up-regulation of the B-raf kinase activity leading to the stabilization of hypoxia-inducible factor 1-alpha (HIF-1α) - the promoter of the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) enzyme. The aim of the study was to examine the effect of the (2E)-3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), as an inhibitor of PFKFB3, on human melanoma cells (A375) with endogenous BRAFV600E mutation. MATERIALS AND METHODS: A375 cells were exposed to different concentrations of 3PO and the following tests were performed: docking, cytotoxicity assay, immunocytochemistry staining glucose uptake, clonogenic assay, holotomography imaging, and flow cytometry. RESULTS: Our studies revealed that 3PO presents a dose-dependent and time-independent cytotoxic effect and promotes apoptosis of A375 cells. Furthermore, the obtained data indicate that 3PO induces cell cycle arrest in G1/0 and glucose uptake reduction. CONCLUSION: Taking all together, our research demonstrated a here should be proapoptotic and antiproliferative effect of 3PO on A375 human melanoma cells.


Assuntos
Inibidores Enzimáticos/farmacologia , Melanoma/enzimologia , Fosfofrutoquinase-2/antagonistas & inibidores , Piridinas/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Domínio Catalítico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Glucose/metabolismo , Humanos , Melanoma/patologia , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Fosfofrutoquinase-2/metabolismo , Piridinas/química , Ensaio Tumoral de Célula-Tronco
18.
Bioorg Chem ; 94: 103419, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31761412

RESUMO

A set of 21 halogenated thiosemicarbazones (TSCs) have been synthesized and its inhibitory properties toward activity diphenolase of mushroom tyrosinase and their ability to inhibition of melanogenesis in B16F10 murine, melanoma cell line have been investigated. The molecular docking to the active site of the enzyme has been also performed to investigate the nature of enzyme-inhibitor interactions. The obtained outcomes allowed us to perform SAR analysis. TSC 6, 12 and 21 exhibited the most potent inhibitory properties showing IC50 of 0.5, 0.9 and 0.8 µM, respectively. They revealed reversible and competitive manner of tyrosinase inhibition. According to SAR analysis, para-substituted acetophenone derivatives of thiosemicarbazones have the highest affinity to the enzyme among the investigated compounds. Melanin production in B16F10 cells was inhibited by all investigated compounds at the micromolar level. Suggested inhibition mechanism is based on the interaction between a sulfur atom of thiourea moiety of the thiosemicarbazones, and copper ions in the active site of the enzyme. These results might be useful in searching novel inhibitors of melanogenesis which could be used in the cosmetic and food industry.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Melaninas/antagonistas & inibidores , Simulação de Acoplamento Molecular/métodos , Monofenol Mono-Oxigenase/efeitos dos fármacos , Tiossemicarbazonas/uso terapêutico , Inibidores Enzimáticos/farmacologia , Humanos , Melaninas/biossíntese , Estrutura Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/farmacologia
19.
Oncol Rep ; 43(1): 270-281, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746432

RESUMO

Lipopolysaccharides are the main surface antigens and virulence factors of gram­negative bacteria. Removal of four ester­bound fatty acid residues from hexaacyl lipid A of Escherichia coli lipooligosaccharide (LOS) resulted in the de­O­acylated derivative E. coli LOS­OH (LOS­OH). This procedure caused a significant reduction in the toxicity of this compound compared to the native molecule. We investigated the effect of such a structural LOS modification on its biological activity using in vitro assays with monocytic cells of the RAW264.7 line, dendritic cells of the JAWS II line, bone marrow­derived dendritic cells (BM­DCs), and spleen cells. Furthermore, in in vivo experiments with a melanoma B16 metastasis model, the anti­metastatic activity of the compounds and spleen cell reactivity mediated by them representing a systemic response were analyzed. The results revealed that LOS­OH demonstrated weaker ability than LOS to stimulate and polarize an immune response both in vitro and in vivo. It induced lower cytokine production by cells of myeloid lines. Multiple applications of LOS­OH into mice injected intravenously with B16 cells significantly (P<0.05; P<0.01) reduced the number of metastatic foci in the lungs, presumably via silencing of myeloid cell reactivity as well as the inability to stimulate lymphoid cells both directly and indirectly. These findings suggest that LOS­OH maintained in the body of metastasis­bearing mice appears to modulate or downregulate the innate response, leading to the inability of blood myeloid cells to support the migration of melanoma cells to lung tissue.


Assuntos
Escherichia coli/metabolismo , Lipídeo A/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Melanoma Experimental/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proteínas de Escherichia coli/administração & dosagem , Proteínas de Escherichia coli/farmacologia , Feminino , Humanos , Injeções Intravenosas , Lipídeo A/química , Lipídeo A/farmacologia , Neoplasias Pulmonares/imunologia , Melanoma Experimental/imunologia , Camundongos , Células RAW 264.7 , Evasão Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
In Vivo ; 33(6): 1857-1864, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662513

RESUMO

BACKGROUND/AIM: There is no satisfactory treatment of glioblastoma multiforme, a highly invasive brain tumor. The aim of this study was to analyze the cytotoxic effects of curcumin (CUR) alone and as a photosensitizer on glioblastoma cells. MATERIALS AND METHODS: The SNB-19 cells where incubated for 2 and 24 h with 5-200 mM of CUR. The cells were radiated with blue light (6 J/cm2) and compared to non-irradiated ones. The effects of treatment were assessed by measuring mitochondrial activity with the MTT method and apoptosis progression by flow cytometry. To investigate CUR uptake, fluorescence imaging of cells was performed. RESULTS: Photosensitization of CUR decreased the EC50 6.3 times when the incubation time was 2 h and over 90% of cells underwent apoptosis. The study of the uptake of CUR showed that during the 2 h, CUR was placed in the entire cytoplasm, and over time, its amount decreased and localized in the subcellular compartments. CONCLUSION: CUR is a promising medicament that can be used as a photosensitizer in photodynamic therapy for glioma treatment.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Curcumina/farmacologia , Glioblastoma/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Fotoquimioterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...